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1. A modification of the Newton’s method for approximating the root ⇠ of the
equation f(x) = 0 finds the next approximation x

n+1 as the zero of the linear
interpolation polynomial to f at the points x

n

and x

?

n

, where x

?

n

:= x

n

+ f(xn)
4 .

Analyze the rate of convergence of this method and find conditions on f and the
initial approximations x0 and x1 that guarantee the convergence.

2. Given the values at the points x� 2h, x� h, x, x+ h, x+ 2h of the function
g, derive two formulas approximating the first derivative g

0(x) described by:
(a) has maximal degree of approximation assuming that g(x) is su�ciently smooth;
(b) is based on least squares fitting by a second degree polynomial.

Comment on the optimal choice of h in each case assuming that the error of calculating
g is ".

3. Find the algebraic polynomials P
k

of degrees k = 0, 1, 2, 3 that realize the best
L1-approximation in the interval [�1, 1] to the function F (x) defined as F (x) = x+1
for x 2 [�1, 0] and F (x) = x

2 + x+ 1 for x 2 [0, 1].

4. Find the simple quadrature rule of highest degree of precision for estimatingR 1

�1 f(x)dx in terms of the values of f at �2/3, 0, and 2/3. Give a complete
convergence analysis for the corresponding composite quadrature rule and comment
on the e↵ect of the calculation error assuming that the error of calculating f is ".

5. Consider the matrix A =

2

4
0 1
1 0
1 1

3

5.

(a) Determine SVD of A.
(b) Determine QR factorization of A.
(c) What is the orthogonal projector P onto range(A), and what is the image

under P of the vector (1, 2, 3)⇤?

6. Estimate the condition numbers of the problem of finding a unit vector x 2 Cm

such that the product x

⇤
F has the maximal possible `2-norm for a given matrix

F 2 Cm⇥n. What is the condition number of the problem of finding the value of the
maximal `2-norm of the product of a unit vector with F?

7. Either propose a backward stable method or prove that no such method exist
for the problem of finding x 2 Cm that satisfies Ax = A

⇤
b for a given non-singular

matrix A 2 Cm⇥m and a vector b 2 Cm.

8. A real symmetric m ⇥ m matrix A has eigenvalues �1 � 1 and �2 2 (12 ,
5
8)

while all the other eigenvalues are much smaller: |�
j

|  1
8 for j = 3, 4, ...,m. Describe

an iterative algorithm for finding �2 and the corresponding eigenvector v2. Give an
estimate how much the approximations of �2 and v2 improve after each iteration.


