SPECIAL TOPICS IN PHYSICAL CHEMISTRY

NANOSCIENCE:

Chemistry and Physics of Low-Dimensional Materials

CHEM 649 / 749 - SPRING 2023

COURSE TOPICS

- 1. Wavefunctions in crystalline materials including metals and semiconductors
 - Band theory: metals and semiconductors
 - Quantum confinement and concepts of dimensionality
- 2. Diffusive motion
 - Of **charge carriers** in solids and devices like solar cells!
 - Of ions and colloidal particles in solution!
- 3. Statistical descriptions of size and size distributions
- 4. Synthetic routes to nanostructures via chemistry and via microfabrication
- 5. Representative applications of nanomaterials in **biomedical imaging** and in **energy conversion and storage**.

Pertinent articles from the primary literature will be discussed in class. No final exam! A final presentation enables students to explore an independent topic.

Text: Introductory Nanoscience by Masaru (Ken) Kuno (2011). Credits: 3

TIME & PLACE Tuesday / Thursday 10:05 AM – 11:20 AM

Science & Technology Building (STB, 1112 Greene St) Room 412

INSTRUCTOR Andrew B. Greytak

Department of Chemistry and Biochemistry Email: greytak@sc.edu / Tel. 803-777-0672

RECOMMENDEDCalculus-based PhysicsPREPQuantum Mechanics(INFORMAL)Thermodynamics

Build your understanding of size-dependent physical properties in materials, and synthetic routes to materials with nanometer-scale dimensions under kinetic control. An emphasis is placed on systems displaying size-dependent electronic and optical properties including inorganic nanostructures. These concepts will enable students to understand and innovate in many areas of nanoscience.

Graduate students, including BS/MS students, and undergraduates with the prerequisites, are welcome!

Grad students register Chem 749, section 001

Undergrads register Chem 649, section 003 (simplified final project).

